Dependency Language Models for Transition-based Dependency Parsing
نویسندگان
چکیده
In this paper, we present an approach to improve the accuracy of a strong transition-based dependency parser by exploiting dependency language models that are extracted from a large parsed corpus. We integrated a small number of features based on the dependency language models into the parser. To demonstrate the effectiveness of the proposed approach, we evaluate our parser on standard English and Chinese data where the base parser could achieve competitive accuracy scores. Our enhanced parser achieved state-of-the-art accuracy on Chinese data and competitive results on English data. We gained a large absolute improvement of one point (UAS) on Chinese and 0.5
منابع مشابه
An improved joint model: POS tagging and dependency parsing
Dependency parsing is a way of syntactic parsing and a natural language that automatically analyzes the dependency structure of sentences, and the input for each sentence creates a dependency graph. Part-Of-Speech (POS) tagging is a prerequisite for dependency parsing. Generally, dependency parsers do the POS tagging task along with dependency parsing in a pipeline mode. Unfortunately, in pipel...
متن کاملتأثیر ساختواژهها در تجزیه وابستگی زبان فارسی
Data-driven systems can be adapted to different languages and domains easily. Using this trend in dependency parsing was lead to introduce data-driven approaches. Existence of appreciate corpora that contain sentences and theirs associated dependency trees are the only pre-requirement in data-driven approaches. Despite obtaining high accurate results for dependency parsing task in English langu...
متن کاملGenerative Incremental Dependency Parsing with Neural Networks
We propose a neural network model for scalable generative transition-based dependency parsing. A probability distribution over both sentences and transition sequences is parameterised by a feedforward neural network. The model surpasses the accuracy and speed of previous generative dependency parsers, reaching 91.1% UAS. Perplexity results show a strong improvement over n-gram language models, ...
متن کاملTransition-Based Natural Language Parsing with Dependency and Constituency Representations
Hall, Johan, 2008. Transition-Based Natural Language Parsing with Dependency and Constituency Representations, Acta Wexionensia No 152/2008. ISSN: 1404-4307, ISBN: 978-91-7636-625-7. Written in English. This thesis investigates different aspects of transition-based syntactic parsing of natural language text, where we view syntactic parsing as the process of mapping sentences in unrestricted tex...
متن کاملStatistical Language Models for Information Retrieval
Dependency-based methods for syntactic parsing have become increasingly popular in natural language processing in recent years. This book gives a thorough introduction to the methods that are most widely used today. After an introduction to dependency grammar and dependency parsing, followed by a formal characterization of the dependency parsing problem, the book surveys the three major classes...
متن کامل